ZMIC Journal Club

DeepMesh


Mesh-based Cardiac Motion Tracking using Deep Learning


Presenter: 张杨
School of Data Science, Fudan University
2025-08-14

VT Screening
ZMIC Journal Club

Paper Info

Intro
ZMIC Journal Club

Table Of Content

  • Introduction
    • a Brief Look at Mesh Data
    • Conference Paper overview
    • Journal Paper overview
  • Related Work
    • Mesh Reconstruction
    • Motion Tracking
  • Methods
    • Mesh Reconstruction module
    • Motion Tracking module
    • Mesh-to-image rasterizer
  • Experiments
Intro
ZMIC Journal Club

.stl file

  • .stl means stereolithography, a technique or process for creating three-dimensional objects.
Intro
ZMIC Journal Club

.stl file

  • Mesh data is composed of vertex (3d point) and facet (triple index of vertex).
Intro
ZMIC Journal Club

MulViMotion

Intro
ZMIC Journal Club

DeepMesh

Intro
ZMIC Journal Club

Mesh Reconstruction

DeepMesh directly predicts the 3D surface mesh of the heart at the ED frame by deforming a cardiac template according to the input 2D multi-view cine CMR images.

Related Work
ZMIC Journal Club

Motion Tracking

  • Conventional methods
    • using FFD registration[2][6][8]
    • continuous spatiotemporal B-spline kernels[20]
  • Deep learning-based methods: U-Net or GNN
    • joint deep learning network for simultaneous cardiac segmentation and motion estimation[5]
    • [27] utilizes a modified U-Net to generate flow maps between the ED frame and any other frame.
    • [12] focused on 3D motion tracking by fully combining multiple anatomical views.

DeepMesh focuses on estimating 3D motion in mesh space using multi-view CMR including SAX and LAX.

Related Work
ZMIC Journal Club

Mesh reconstruction module

  • Input: ED frame SAX and LAX (2CH+4CH) CMR
  • Estimate a deformation
  • Bi-linear Grid Sampling:
  • Output:
    • apply to template on each vertex:
    • F (facets) remain unchanged
    • 22, 043 vertices and 43, 840 faces
  • Mesh-to-image rasterizer: see later.
Methods
ZMIC Journal Club

Mesh reconstruction module: deep net

Methods
ZMIC Journal Club

Mesh reconstruction module: loss function

  1. Regularization (Huber) loss on deformation

  1. Smooth loss: regularize adjacent vertices

  1. Surface loss: between reconstructed mesh and the ground truth mesh

  1. Shape loss: weighted Hausdorff distance, see later.

Methods
ZMIC Journal Club

Motion tracking module

  • Input: Multi-frame SAX and LAX (2CH+4CH) CMR
  • Estimate a deformation
  • Bi-linear Grid Sampling:
  • Output:
    • apply to template on each vertex:
    • F (facets) remain unchanged
Methods
ZMIC Journal Club

Motion tracking module: deep net

Methods
ZMIC Journal Club

Motion tracking module: loss function

  1. Regularization (Huber) loss on deformation

  1. Smooth loss: regularize adjacent vertices

  1. Simliarirty loss: inverse transform.

  1. Shape loss: weighted Hausdorff distance, see later.

Methods
ZMIC Journal Club

Differentiable Mesh-to-image rasterizer

Methods
ZMIC Journal Club

Experiments: Mesh to plane

Experiments
ZMIC Journal Club

Experiments: Motion Tracking

Quantitatively evaluated the performance on the ES frame (have gt).

Experiments
ZMIC Journal Club

Experiments: Motion Tracking across cardiac cycle

Experiments
ZMIC Journal Club

Ablation Study: Mesh reconstruction

Compared with ground truth 2D myocardium contours.

Multi-view CMR helps a lot.

Experiments
ZMIC Journal Club

Ablation Study: Motion Tracking

Experiments
ZMIC Journal Club

Experiments: Loss Ablation viz

Experiments
ZMIC Journal Club

THANKS

THANKS